INDIAN MARITIME UNIVERSITY

(A Central University Government of India) END SEMESTER EXAMINATIONS-June/July 2019
B.Tech (Marine Engineering)

Semester-I
Mathematics-I (UG11T2102)

Date: 11-07-2019
Duration: 3 hrs

Maximum Marks: 100
Pass Marks: 50
i. Use of approved type of scientific calculator is permitted
ii. The symbols have their usual meaning

Section-A

$(3 \times 10=30)$
(All Questions are Compulsory)
$\mathbf{1 (a)}$. Find the $n^{\text {th }}$ derivative of $\frac{x}{(x-1)(2 x+3)}$
(b). Find the radius of the curvature of any point ($a t^{2}, 2 a t$) of the parabola $y^{2}=4 a x$.
(c). Find the first and second partial derivatives of $z=x^{3}+y^{3}-3 a x y$.
(d). Find the asymptote of the curve $x^{2} y^{2}-x^{2} y-x y^{2}+x+y+1=0$.
(e). If $u=\tan ^{-1} \frac{x^{3}+y^{3}}{x-y}$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u$.
(f). Prove that $\Gamma(n+1)=n \Gamma(n)$.
(g). Find an unit vector normal to the surface $x y^{3} z^{2}=4$ at the point $(-1,-1,2)$.
(h). A vector field is given by $\vec{A}=\left(x^{2}+x y^{2}\right) \dot{i}+\left(y^{2}+x^{2} y\right) \vec{j}$. Show that the field is irrotational.
(i). Find the eigen value of $\left(\begin{array}{ll}1 & -1 \\ 2 & 4\end{array}\right)$.
(j). Evaluate $\int_{c} \frac{z^{2}-z+1}{z-1} d z$ where c is the circle $|z|=1$.

PART B

(Answer any five questions)

2(a). If $y^{\frac{1}{m}}+y^{\frac{-1}{m}}=2 x$, prove that $\left(x^{2}-1\right) y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}-m^{2}\right) y_{n}=0$.
(b). Find the asymptote of the curve $x^{3}+3 x^{2} y-4 y^{3}-x+y+3=0$.

3(a). A window has a form of a rectangular surmounted by a semi-circle. If the perimeter is 40 feet, find its dimension so that the greatest amount of light may be admitted.

3(b). If z is a homogeneous function of degree n in x and y, show that

$$
\begin{equation*}
x^{2} \frac{\partial^{2} z}{\partial x^{2}}+2 x y \frac{\partial^{2} z}{\partial x \partial y}+y^{2} \frac{\partial^{2} z}{\partial y^{2}}=n(n-1) z . \tag{7}
\end{equation*}
$$

4(a). Prove that $\beta(\mathrm{m}, \mathrm{n})=\frac{\Gamma(m)\ulcorner(n)}{\Gamma(m+n)}$
4(b). Find the volume of a sphere of radius a.
5(a). Show that the area between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$

$$
\begin{equation*}
\text { is } \frac{16}{3} a^{2} \text {. } \tag{7}
\end{equation*}
$$

5(b). Evaluate $\int_{y=0}^{1} \int_{x=y}^{1} e^{x^{2}} d x d y$ by changing the order of integration.
6(a). Find the work done in moving a particle in the force field $F=3 x^{2} i+(2 x z-y) j+z k,(\mathrm{i}, \mathrm{j}, \mathrm{k}$ are the unit vectors along x, y and z axis
respectively) along the straight line from $(0,0,0)$ to $(2,1,3)$.
6(b). Prove that $\operatorname{div}\left(r^{n} R\right)=(n+3) r^{n}$. Hence show that $\frac{R}{r^{3}}$ is solenoidal.

7(a). Solve the equations $3 x+y+2 z=3,2 x-3 y-z=-3, x+2 y+z=4$ by By (i) Determinant and (ii) Matrix.

7(b). Verify Caley-Hamilton theorem for the matrix

$$
\left[\begin{array}{lll}
2 & -1 & -1 \tag{7}\\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]
$$

8(a). Determine the poles of the function $f(z)=\frac{z^{2}}{(z-1)^{2}(z+2)}$ and the residue at each pole. Hence evaluate $\int_{c} f(z) d z$, where c is the circle $|z|=2.5$.

8(b). Using simplex method solve the following LPP
Max $Z=2 x_{1}+3 x_{2}$

$$
\text { Subject to } \begin{align*}
& x_{1}+x_{2} \leq 1 \\
& 3 x_{1}+x_{2} \leq 4 \tag{7}\\
& x_{1}, x_{2} \geq 0
\end{align*}
$$

